
Composing neural algorithms with Fugu
James B. Aimone, William Severa, Craig M. Vineyard
Center for Computing Research, Sandia National Laboratories

Albuquerque, New Mexico
jbaimon@sandia.gov,wmsever@sandia.gov,cmviney@sandia.gov

ABSTRACT
Neuromorphic hardware architectures represent a growing fam-
ily of potential post-Moore’s Law Era platforms. Largely due to
event-driving processing inspired by the human brain, these com-
puter platforms can offer significant energy benefits compared
to traditional von Neumann processors. Unfortunately there still
remains considerable difficulty in successfully programming, con-
figuring and deploying neuromorphic systems.We present the Fugu
framework as an answer to this need. Rather than necessitating a
developer attain intricate knowledge of how to program and exploit
spiking neural dynamics to utilize the potential benefits of neu-
romorphic computing, Fugu is designed to provide a higher level
abstraction as a hardware-independent mechanism for linking a va-
riety of scalable spiking neural algorithms from a variety of sources.
Individual kernels linked together provide sophisticated processing
through compositionality. Fugu is intended to be suitable for a wide-
range of neuromorphic applications, including machine learning,
scientific computing, and more brain-inspired neural algorithms.
Ultimately, we hope the community adopts this and other open
standardization attempts allowing for free exchange and easy im-
plementations of the ever-growing list of spiking neural algorithms.
ACM Reference Format:
James B. Aimone, William Severa, Craig M. Vineyard. 2019. Composing
neural algorithms with Fugu. In ,. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The success of neuromorphic computing technologies is dependent
on its large-scale adoption as a post-Moore’s law, low power solu-
tion for multiple applications. The generality of neural computing
approaches is an area of active exploration [1, 2], but there is already
a growing disparity between this value of neuromorphic systems
as a general tool and emerging software stacks for leveraging these
platforms for specific functions. For individual applications, such
as spiking deep neural networks (DNNs), pre-defined specialized
solutions are often sufficient. An example of this is the Whetstone
software, which we recently introduced [11] as a tool to convert
standard Keras-trained DNNs to a spiking-compatible structure.
Similarly, there are an increasing number of options for neural pro-
gramming environments that are premised on established classes of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

neural computation. Tools such as PyNN [4], Nengo [3], and N2A
[8] assume certain intent among user communities, and thus while
often powerful, these implicitly require that users orient themselves
to a certain perspective of neural computation.

Here, we sought to develop a programming platform to enable
the development of neuromorphic applications without substan-
tial knowledge of neural computing or neuromorphic hardware.
Our solution, which we refer to as Fugu1, is intended to facilitate
neuromorphic application development in a manner similar to how
CUDA facilitates the programming of GPUs.

Fugu is structured so as to separate the task of programming
applications that may leverage neuromorphic hardware from the
design of spiking neural algorithms (SNAs) and the specific details
of neuromorphic hardware platforms. We accordingly foresee three
categories of users. The primary target population is the general
computer programming community; well-versed in scientific com-
puting approaches but perhaps only modestly familiar with parallel
computing and likely unfamiliar with neural approaches. For the
adoption of neuromorphic hardware it is critical that these users
can leverage this technology. To enable this, a second group of users
- those capable of designing SNAs - also need to be able to incorpo-
rate their algorithms into the Fugu construct. This population of
users may be well versed in neural computation generally, but also
may not be familiar with specific considerations of different neural
hardware platforms. Finally, the third category of users would be
those who are deeply familiar with neuromorphic hardware, and
are capable of optimizing and tailoring generic SNAs into algorith-
mic implementations that are optimized to the current conditions
of neuromorphic hardware.

2 BACKGROUND
Fugu is a high-level programming framework specifically designed
for develolping spiking algorithms in terms of computation graphs.
At the lowest level, SNAs are directed graphs, with nodes corre-
sponding to neurons and edges corresponding to synapses. How-
ever, by considering how SNAs can be networked together (not
unlike how the brain consists of networks of local circuits), Fugu is
able to consider a higher level graphical perspective of the overar-
ching computation.

A key underpinning of Fugu is that SNAs, if properly constructed,
should be composable. In the context here, this means that two
appropriately constructed SNAs can be combined to form larger
algorithms in that the outputs of one can be used as the inputs to
the other. The following sections will highlight how this concept

1The name Fugu is inspired by the Japanese word for pufferfish; which, of course, have
spikes. Furthermore, Fugu is considered a culinary delicacy due to the presence of low
levels of the neurotoxin tetrodotoxin, or TTX, which has significant value in studying
the electrophysiology mechanisms underlying biological action potentials. Only one
author (CMV) has eaten Fugu before.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 James B. Aimone, William Severa, Craig M. Vineyard

of compositionality is more than simply matching sizes. For two
small SNAs to be combined into a larger SNA, the sizes, temporal
structure, and encoding schemes have to align. This process can
become non-trivial when a number of SNAs are to be composed
together, the automation of which is the primary contribution of
Fugu.

Fugu is designed primarily for spiking algorithms, the core model
for which is described in section 2.1 below. However, this emphasis
on spiking is not meant to preclude its future use for architectures
which may achieve benefits from other features such as analog
arrays. Most neural algorithms, whether spiking or not, can be
considered through a graphical perspective and thusmay be suitable
for the approach described here.

2.1 Generic spiking neural algorithm model
Fugu assumes a fairly simple neural model for SNAs, so as to enable
the generic use of spiking neuromorphic hardware. The default neu-
ron model of Fugu is that of leaky-integrate and fire (LIF) neurons,
with parameterizable voltage thresholds (Vthresh), time constants
τi , and reset voltages Vreset. The default synapses are considered
point synapses, with a parameterized weight wi, j , where i and j
are source and target neurons respectively. At each timestep, each
neuron computes the voltage at time t given by Vt in the following
manner

V̂j (t) =
∑
i

fi (t) ∗wi, j +Vj (t − 1),

Vj =

{
Vreset if V̂j > Vthresh
(1 − τj)V̂j elsewise.

,

fj (t) =

{
P if V̂j > Vthresh
0 elsewise.

where the firing, fj (t) is determined if the neuron’s voltage
crosses a threshold. To account for probabilistic neural transmission,
P is a probabilistic Bernoulli draw of either 0 or 1 according to a
stochastic firing rate at rate p. If neurons are not stochastic, p = 1.

2.2 Learning, structural plasticity, and other
extensions to core spiking model

The design of Fugu allows for capabilities beyond this basic model.
For instance, if a given algorithm requires a learning mechanism
with a particular learning coefficient, that can be included as an
attribute of specific synapses, but not all neuromorphic hardware
may be capable of implementing that algorithm correctly. Similarly,
more sophisticated neuron models, such as multi-compartment
models (which leverage dendritic dynamics) and conductance-based
models are entirely valid from an algorithm design perspective,
however there are few hardware platforms that can fully leverage
these.

These added complexities will likely arise with more sophisti-
cated algorithms, particularly from biologically-inspired models.
Fugu thus remains somewhat agnostic to what occurs beyond the
basic LIF model within a given SNA, although such functions may
present a risk that the algorithm may not be compatible with a
downstream platform. Accordingly, one key requirement is that
the communication and connections between algorithms - which is

the operational domain of Fugu, is expressly compatible with the
standard LIF model. In this sense, component SNAs must present
discrete spike events as outputs and similarly (with some excep-
tions) take in spike events as inputs.

3 DESIGN OF FUGU
As stated above, a key goal of Fugu is to provide a general scien-
tific computing user access to emerging neuromorphic hardware
— specifically spiking neuromorphic hardware — by providing an
accessible library of functions that Fugu can map into neural hard-
ware. Figure 1 provides an overview of the Fugu framework which
we will elaborate upon the subcomponents in the following sec-
tions.

Fugu accomplishes this by providing the following core capabili-
ties:

• An API to conventional programming environments
(i.e., Python, C++)

• Automated construction of a graphical intermediate
representation of spiking neural algorithms

• Outputs to neural hardware compilers or Fugu’s refer-
ence simulator

The following sections expand on each of these topics.

3.1 API
The goal of the API for Fugu is to make the construction of a Fugu
algorithm be readily called from C++ or Python. In theory, all of
the SNA requirements and processing should be transparent to a
user; such that they only have to call a function with standard I/O
protocols; not unlike a hardware interface language such as CUDA.

The intent of Fugu is to enable the user to program an application
to neuromorphic hardware with only limited knowledge of the
underlying architecture or requisite algorithms. Thus, the API level,
which is the interface that we expect to be most commonly used,
simply requires the user to define a computational graph, which
we call a scaffold. Each Fugu scaffold consists of nodes, known as
bricks, which are the component SNAs, and edges between those
bricks that define the flow of information.

During the design of a Fugu application, a user would construct
a computational graph of an application. Consider a simple applica-
tion with four operations: function A processes an input, functions
B and C each process the output of A, and function D combines
the outputs of B and C. As shown in the pseudocode within Fig-
ure 2, from a simple set of instructions of how to connect these
four functions, Fugu would construct bricks for each function and
compose them into a larger algorithm scaffold.

This scaffold is a graphical representation of the desired Fugu
algorithm, however this perspective remains agnostic the eventual
populations of neurons that will perform the desired computation.
Each of the bricks consists of instructions for building its particular
neural algorithm, which can take any number of forms. To become
functional, the overall scaffold must progress from individual brick
representations which must be populated with the appropriate
internal neural circuits that have been appropriately scaled and
configured to interface with all of the brick’s neighbors.

Composing neural algorithms with Fugu ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019

Figure 1: An overview diagram of a common workflow in Fugu (Green squares). Code exists to underlie this workflow (Blue
hexagons) with examples provides (Tan diamonds).

3.2 Intermediate Representation
The primary contribution of Fugu is the managed and automated
IR between higher-level coding environments and low-level neu-
romorphic hardware and their compilers. This IR consists of three
components that, during compilation, provide the connection be-
tween the API and the compiler output: a library of SNA bricks, a
collection of algorithms for linking SNA bricks, and the combined
application graph output.

The IR of Fugu exists within Python, and it leverages the Net-
workX libary [5] to construct and manage the neural circuits that
will be generated and combined during Fugu operation.

3.2.1 Library of SNA Bricks. The Fugu library consists of a grow-
ing set of SNA bricks that are suitable for being composed together
into larger functional units. Importantly, the algorithm bricks that
are contained within Fugu generally do not consist of explicit neural

circuits, but rather they are scripts that can generate the appropri-
ate neural circuit for a given application. This allows them to be
sized appropriately to tailor them to interface with predecessors.

For example, we consider the constant-time 1-dimension max
cross-correlation algorithm in [10]. That algorithm compares two
binary vectors of length N by having a dedicated neuron within
an intermediate layer calculate each potential off-set, requiring an
intermediate layer of size N 2. Subsequently, an output layer, sized
2N − 1 samples that intermediate layer to determine the relative
shift between inputs that yields the maximal overlap. Figure 3
illustrates these two different SNAs with their differing resource
requirements.

As the description shows, the exact neural circuit needed is
highly specific to N . In addition, the resulting circuits have other
important properties that will be necessary at later Fugu steps. For
instance, for the constant-time algorithm, the inputs are provided

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 James B. Aimone, William Severa, Craig M. Vineyard

Figure 2: Fugu Scaffold and Bricks

Figure 3: Two SNAs for computing cross-correlation requr-
ing different space and time complexities

all at the same time (Tin = 1), and the output is always a single time-
step (Tout = 1) arriving two time steps later (D = 2). An alternative
version of this algorithm streams the inputs in over time and uses
delays to make the same computation with fewer neurons, albeit at
an extended time cost, a characteristic that will produce different
neural circuit and associated metadata. It is also important to note
that this metadata may be a function of input parameters as well —
for instance in the matrix-multiplication application described in
[7], there is a version of the algorithm whose depth isO(log logN),
where N is the size of the largest matrix dimension.

A schematic of a Fugu brick is shown in Figure 4. Some properties
common for bricks within Fugu are:

• Nin – number of input neurons

Figure 4: Spiking Algorithm as Fugu Brick

• Tin – time length of inputs (how long do inputs stream in).
=inf if streaming

• Nout – number of output neurons
• Tout – time length of output. = inf if streaming
• D – circuit depth, corresponding to howmany global timesteps
must pass for the input at t=1 to reach

However, ultimately the determination of the required parame-
ters is dependent on the coding scheme. To abstract these concepts,
we incorporate a local ‘index’ to each of a brick’s output neurons. A
neuron’s index indicates (to any downstream brick) the information
represented by that neuron (e.g., which component of a coding is
represented by that neuron). By adopting a standardization on this
indexing, bricks are able to communicate with one another with-
out imposing design considerations within the bricks themselves.
Additionally, the index provides a flexible mechanism supporting
an arbitrary number of dimensions or subsets.

To exist within Fugu, each of the bricks must be able to take in-
structions from the Fugu environment and produce the appropriate
neural circuit NetworkX graph per the necessary scales and timings.
These circuits are referred to as local circuits, and are standalone
circuit SNAs for computing the requisite function.

3.2.2 Linking code to combine local circuits into global circuit.
Once a scaffold is constructed by linking bricks together, the scaffold
must build a comprehensive global graph (which we call a circuit).
This circuit is a platform-independent intermediate representation
that becomes complied down to platform-specific code. Fugu builds
the circuit using a lazy method, iterating over the nodes of the
scaffold graph. When a brick is capable of building itself (due to
the determination of parameters upstream), it builds its local graph
according to the build-time requirements of the scaffold and this
local graph is incorporated into the global circuit. The process of
laying bricks is seamless and automatic to the end user, and brick
developers only need to manage their own local graphs.

There are two primary challenges and a number of routine steps
that require care for linking these circuits together.

Align sizes of bricks. Eachmodel has an input sizeNin and an out-
put size Nout , and in order for two bricks to be compatible with one
another serially, then it is necessary that the downstream module is
scaled appropriately to generate a graph suitably sized to take the
outputs. n general, the shape of the input determines the remainder
of the graph. So, when a user defines the input shape (via input
bricks), Fugu can determine the required shape, dimensionality, or
other parameters of any connected bricks automatically.

A general scheme is shown in Figure 5.

Composing neural algorithms with Fugu ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019

Figure 5: Normalizing brick sizes

Align timings of bricks. Each of the bricks requires some amount
of computation time or ‘circuit depth’. If bricks are intended to run
in parallel, the difference in timings and depths may require that
an additional delay circuit is instantiated on one of the pathways
to ensure that the circuit is appropriately timed. Figure 6 illustrates
this idea.

As the branches may be indexed arbitrarily and the time or depth
of a module may be undetermined until its overall size is identified,
it is unknown at the start of Fugu which branch will be the limiting
factor in terms of time. This longest branch is the reference length
that all other branches must match. Once this branch depth is found,
we then work through each of the other branches to make the
depths equivalent.

If the branch depth can be fully determined at build time, we can
simply add a delay block - most simply a set of repeater neurons
that spike with a delay of whatever the difference is. Most simply,
this delay block could be at the end of the branch. However, there
is likely a benefit to load balance over time; the delays will be
relatively cheap in terms of computation, and thus they can perhaps
be staggered at different times of each branch to keep the overall
network activity at a roughly comparable level.

If the branch depth is variable or dependent on the input data (e.g.
an iterative algorithm with depth determined at runtime), then we
can stage information other branches in a buffer until all branches
have completed their computation. This buffer can then be released
using control nodes—Extra neurons instantiated in the graph to
signal control commands. Each brick defines at least one control
node that fires on completion. This signal can then be used to flush
a buffer and continue the computation.

There is also a third potential solution, though it would require
more careful implementation. Many of the SNAs being developed
can be tailored to use fewer neurons if more time is available. This
time-space tradeoff is generally biased towards the faster algorithm;
however in cases where a module with such a tradeoff sits within
a branch with “free-time” so to speak, it is possible, and perhaps
even advantageous, to represent that module in a more time-costly,
space-efficient manner that reduces the overall neuron footprint of
the model.

3.2.3 Output. The output of Fugu will be a single NetworkX
graph that fully describes the spiking neural algorithm. The edges

Figure 6: Adding a delay to synchronize Fugu branches

of this graph will be the synapses of the model, and will accordingly
have weights associated with them as attributes. The nodes of this
graph will be the neurons of the model, and will accordingly have
dynamics parameters associated with them. Additionally, some
parameters, such as learning rates, additional dynamical states, etc.
may be included within the attributes.

3.3 Neuromorphic Hardware Compilers, the
Reference Simulator, and Intentional
Limitations of Fugu

The primary output of Fugu is the above-stated NetworkX graph
that represents the desired neural algorithm, but is also hardware
agnostic. Currently, each major neuromorphic platform has its own
unique programming interface, and thus it is reasonable to assume
that for the near future the need for a “neuromorphic hardware
compiler” will be met by one-off solutions specific to different
platforms.

Because of this, we envision that as these hardware-specific
interfaces begin to stabilize, it will hopefully be straightforward
to convert from this generic NetworkX computational graph de-
scription of the Fugu algorithm to any required hardware format.
However, given that these platforms remain a fluid target, Fugu
also includes a reference simulator which enables algorithms to be
prototyped.

The reference simulator is designed to be conservative: clearly
the breadth of what simulations can implement far outstrip current
neuromorphic hardware capabilities today; especially when dy-
namics such as synaptic plasticity and architectural reconfiguration
are considered. As such, because the Fugu simulator is intended to
show that an implemented algorithm would be capable of running
on a generic neuromorphic system, we do not yet include learn-
ing, complex neuron types, or other capabilities beyond the basic
LIF model. This is not a judgment on the value or importance of
those models; but rather a reflection of the state of the hardware
community. As these platforms capabilities universally begin to
move to include these dynamics, the reference simulator will ad-
vance accordingly to encompass these capabilities. Furthermore,
the reference simulator is not intended to provide indications of the
runtimes and other performance measures neuromorphic hardware
can enable.

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 James B. Aimone, William Severa, Craig M. Vineyard

Figure 7: Combined Bricks

Meanwhile, Fugu bricks can be constructed that include node
(neuron) and edge (synapse) attributes that relate to learning rules
or other extended dynamics, but these would not be assured to
operate as expected on all neuromorphic platforms.

4 EXAMPLES
As follows are four illustrative examples of how bricks and scaffolds
may be defined in Fugu to compute a suite of computations ranging
from basic logic operations to higher level applications such as
graph analytics or scientific computing. In these examples, different
principles of the spiking dynamics are utilized to infer the result of
the computation. This may include the times when spikes occur as
well as the specific neurons which spike.

4.1 Logic
As a simple example brick, we first present the logical AND func-
tion. This canonical logic operation outputs true (or one) only when
all of its inputs are simultaneously true. A neuron is able to com-
pute this operation when nominal inputs each contribute to the
receiving neuron whose threshold is equal to the number of inputs.
A leakage value causing the neuron to return to a resting potential
of zero every time-step resets the neuron requiring all inputs must
be received simultaneously. While simplistic, this intuitive brick
example illustrates the definition of neuron parameters and can be
composed in more elaborate scaffolds capable of executing Boolean
logic functions.

Additionally, this brick is easily modified to perform a logical
OR. You simply lower the threshold value so that any incoming
spike is enough to have the OR neuron fire. In this case, as with the
AND neuron, the boolean function is computed exactly and can be
used across coding schemes as long as the shapes of the incoming
bricks are equal.

In general, we do not expect efficiency gains (either wall-time
or theoretical) from implementing boolean logic on neuromorphic
systems. However, these basic components (along with other simple
functions) are key to creating larger, more sophisticated data flows
all while staying on-hardware, avoiding costly I/O with a host
system.

4.2 Graph Analytics
Given a graph, a core computation is determining the distance be-
tween two nodes. We can easily instantiate this as a Fugu brick by
taking a target graph (i.e., the graph on which we are determin-
ing distances) and creating a spiking neural network where each
node is represented by a neuron and each graph edge is a synapse.
For a un-directed graph, we create a synapse in both directions.
For a weighted graph, the weight is converted to a proportional
synaptic delay. Then, we simply set the parameters such that (1) a
neuron fires when receiving any spike and (2) a neuron only fires
once (this can be done by a very low reset voltage or by a self-link
with strong negative weight). Then, we begin the algorithm forc-
ing the source node/neuron to spike. The shortest path distance
between the source neuron and any other neuron is computed by
the time it takes for the target neuron to spike. This algorithm
has been described independently several times, including [6], and
our inclusion here is not novel. However, we do now remark how
such an algorithm could fit within a larger Fugu scaffold for more
complicated algorithms.

First, we note that the algorithm is ‘started’ by having the source
node fire. Fugu can provide an input with equivalent dimensionality
as the nodes on the graph, essentially a rasterized image of the
target graph in neurons. This means that we can use Fugu-style
preproccesing functions to determine the source neuron. A simple
example of suchwould be using an image classifier to identify points
of interest in overhead imagery. The user can then cross-reference
that overhead imagery with a map of the area, and Fugu effectively
computes distances on that map according to the location of objects
in the imagery.

Second, the output of the path-length determination is tempo-
rally coded—The amount of time it takes for the target neuron to
spike is equal to the length of the shortest path from the source
node to the target node. This temporal representation is one of the
core number schemes supported in Fugu. As such, we can then
take the output of this brick and perform in-Fugu post-processing.
For example, we can easily compare the value against a reference
value using a Threshold brick (e.g., computing if one has enough
fuel to make a trip) or compare against other path lengths in a

Composing neural algorithms with Fugu ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019

first-come-first-serve Minimum brick (e.g., determining who would
get to a destination first).

These handful of example extensions only being to describe the
types of complex algorithms possible through compositionality.
Despite each of the above bricks being simple in there own right,
they can combine together for sophisticated calculations.

4.3 Game Theory
Building upon the prior two examples, cast to a temporal regime, a
neural computation graph can be used to determine the pure strat-
egy Nash equilibra of some game theoretic problems. For example,
consider the canonical two player prisoner’s dilemma game. In this
scenario, two captured prisoners are interrogated separately and
the prison sentences they receive are dictated by their decisions to
confess and testify against their partner or to not confess and stand
firm in their allegiance to their criminal partner. Each criminal
has preferences over their sentencing, namely to receive a shorter
sentence, and the game dynamics are defined such that what is best
for an individual prisoner is not the same as what is best for the
two criminals jointly.

Representing all pairs of action selections as neurons, and the
player preferences as the distances between a player neuron and the
action space neurons, a graph for determining pure strategy Nash
equilibria may be built. The Nash equilibria is a solution concept
identifying outcomes in which no single player can improve upon
the result by changing their own strategy. To identify these equi-
librium points, an action neuron can only fire if it receives a spike
from both players. This may be achieved either by constructing a
scaffold using AND bricks such that both inputs must be received
simultaneously, or by using the graph analytic distance between
node dynamics to incorporate a firing threshold of two and full
leakage every timestep. The later approach essentially embeds a
logical AND function as the neuron activation function with the
connectivity structure of the graph imposing that the inputs come
from separate input source nodes.

In this sense, while individual players may prefer other outcomes
and effectively send spikes to their closer preferred actions sooner
in time, it is only the joint activation of player actions which drive
a neuron to fire. And effectively, the determination of the Nash
equilbrium is computed by the spiking of action pair neurons. This
premise may be extended to include more actions as well as larger
action spaces, however for clarity of explanation we described the
simple two player two action game here.

4.4 Scientific Computing
Our final example is an illustration of how a standalone neural
algorithm, in this case targeting scientific computing, can be broken
down into separate bricks that potential could have alternative uses
in contributing to other algorithms. Previously, we described two
neural algorithms for simulating a Markov random walk process
to approximate the diffusion equation [9]. One of the algorithms,
termed the particle method in our previous study, simulated random
walk particles directly by dedicating a sub-population of neurons to
simulate each walker. A solution to the diffusion equation (and in
turn many other partial differential equations for which diffusion is

Figure 8: Schematic of Grid Random Walk Implementation
in Fugu. Each block corresponds to a distinct circuit gener-
ated by Fugu which are then composed together to simulate
the random walk process.

a key kernel) can then be achieved by taking population statistics
of the random walkers at different time-steps.

The random walk particle model conceived in [9] is a mono-
lithic neural circuit consisting of many walkers that each consist of
several rings of neurons and control neurons that implement the
random movements. In effect, this model combines two functions
that are repeated for each walker - random movement neurons and
a population that tracks position.

The Fugu implementation, as summarized in Figure 8 breaks
this monolithic neural circuit into three separate components. For
simplicity, what is illustrated is a grid torus that tracks position
over a hexagonal grid, inspired by the grid cells in the brain and the
recent finding that biological navigation leverages random walks
as well [12, 13]. In Fugu, we separate the random walkers into three
parts: a binary random number generator brick, a binary to
unary conversion brick, and a grid position tracker brick, the
latter of which will be repeated at several different sizes for each
random walker that is moving over two dimensions.

Notably, by breaking the random walk algorithm into these com-
ponents, future design decisions rapidly become evident. Depending
on the application needs and algorithm / hardware efficiency, a final
brick could be designed that implements the Chinese Remainder
Theorem to convert from the grid modular code to a histogram of
random walker locations over space. Alternatively, a hippocampus-
inspired place cell brick could be designed that perform this con-
version approximately.

5 DISCUSSION & CONCLUSIONS
The Fugu framework, as introduced here, provides a powerful abil-
ity to abstract the underlying neural dynamics which emerging
neuromorphic hardware is striving to enable. Not only does this
abstraction and composition capability enable a means by which

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 James B. Aimone, William Severa, Craig M. Vineyard

non-experts can consider the benefits of SNAs in their compu-
tations, but it also helps to enable the exploration of when it is
advantageous to do so. In some cases, it has been shown that a SNA
approach is only theoretically beneficial for problems of specific
scale. Fugu enables the composition of SNAs such that individually
their benefits may be limited, but the resultant composite computa-
tion may be favorable factoring in full circuit costs. For example,
Figure 7 shows the combination of bricks for Strassen matrix multi-
plication and SpikeSort which together may yield the computation
of a sorted multiplication.

Leveraging the analysis of algorithm composition Fugu enables,
it may also help provide insight into the impact of architecture
specific design choices when mapping to specific hardware plat-
forms. For example, if architecture limitations necessitate extensive
use of repeater or delay circuitry that exceeds either the available
resources of the architecture or drive up the runtime of the compu-
tation these insights may suggest another hardware be considered
or alternative algorithmic formulation to meet performance con-
siderations. Alternatively, it is also possible that by leveraging the
Fugu provided IR, neuromorphic compilers may explore additional
optimization of the circuit layout which the specific architectural
features of a given neuromorphic platform may be able to uniquely
enable.

By providing Fugu as a framework for developing and compos-
ing spiking algorithms in terms of computation graphs we strive
to further the development of SNAs, enable non-experts to utilize
neuromorphic computing in a variety of domains such as scien-
tific computing, and iterate with neuromorphic architecture devel-
opment to jointly understand the impact of design choices both
algorithmically and architecturally.

ACKNOWLEDGMENT
This research was funded by the Laboratory Directed Research
and Development program at Sandia National Laboratories and
the DOE Advanced Simulation and Computing program. Sandia
National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of San-
dia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

This article describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in the
paper do not necessarily reflect the views of the US Department of
Energy or the US Government.

REFERENCES
[1] James B Aimone. 2019. Neural algorithms and computing beyond Moore’s law.

Commun. ACM 62, 4 (2019), 110–119.
[2] James B Aimone, Kathleen E Hamilton, Susan Mniszewski, Leah Reeder, Cather-

ine D Schuman, and William M Severa. 2018. Non-Neural Network Applications
for Spiking Neuromorphic Hardware. In Proceedings of the Third International
Workshop on Post Moores Era Supercomputing. 24–26.

[3] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C
Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and Chris Eliasmith.
2014. Nengo: a Python tool for building large-scale functional brain models.
Frontiers in neuroinformatics 7 (2014), 48.

[4] Andrew P Davison, Daniel Brüderle, Jochen M Eppler, Jens Kremkow, Eilif Muller,
Dejan Pecevski, Laurent Perrinet, and Pierre Yger. 2009. PyNN: a common
interface for neuronal network simulators. Frontiers in neuroinformatics 2 (2009),
11.

[5] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[6] Kathleen E Hamilton, Tiffany M Mintz, and Catherine D Schuman. 2019. Spike-
based primitives for graph algorithms. arXiv preprint arXiv:1903.10574 (2019).

[7] Ojas Parekh, Cynthia A Phillips, Conrad D James, and James B Aimone. 2018.
Constant-Depth and Subcubic-Size Threshold Circuits for Matrix Multiplica-
tion. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and
Architectures. ACM, 67–76.

[8] Fredrick Rothganger, Christina EWarrender, Derek Trumbo, and James B Aimone.
2014. N2A: a computational tool for modeling from neurons to algorithms.
Frontiers in neural circuits 8 (2014), 1.

[9] William Severa, Rich Lehoucq, Ojas Parekh, and James B Aimone. 2018. Spiking
neural algorithms for markov process random walk. In 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[10] William Severa, Ojas Parekh, Kristofor D Carlson, Conrad D James, and James B
Aimone. 2016. Spiking network algorithms for scientific computing. In Rebooting
Computing (ICRC), IEEE International Conference on. IEEE, 1–8.

[11] William Severa, Craig M Vineyard, Ryan Dellana, Stephen J Verzi, and James B
Aimone. 2019. Training deep neural networks for binary communication with
the Whetstone method. Nature Machine Intelligence (2019), 1.

[12] Sameet Sreenivasan and Ila Fiete. 2011. Grid cells generate an analog error-
correcting code for singularly precise neural computation. Nature neuroscience
14, 10 (2011), 1330.

[13] Federico Stella, Peter Baracskay, Joseph OâĂŹNeill, and Jozsef Csicsvari. 2019.
Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffu-
sion. Neuron (2019).

	Abstract
	1 Introduction
	2 Background
	2.1 Generic spiking neural algorithm model
	2.2 Learning, structural plasticity, and other extensions to core spiking model

	3 Design of Fugu
	3.1 API
	3.2 Intermediate Representation
	3.3 Neuromorphic Hardware Compilers, the Reference Simulator, and Intentional Limitations of Fugu

	4 Examples
	4.1 Logic
	4.2 Graph Analytics
	4.3 Game Theory
	4.4 Scientific Computing

	5 Discussion & Conclusions
	References

